Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Тепловые сравнения и XFR2: Не забудьте удалить пластик с кулера!

Каждая машина преследует цели с разными приоритетами: производительность, потребление, шум, тепловые характеристики или стоимость. Достигнуть всех и сразу очень трудно, так что выбор двух или трех целей — хорошая идея. Как проиграть по ВСЕМ ПЯТИ НАПРАВЛЕНИЯМ?.. Добро пожаловать в мой мир. Мир, в котором я впервые протестировал 32-ядерный AMD Ryzen Threadripper 2990WX, забыв удалить пластик с моего жидкостного кулера.

Не собирайте систему после длительного перелета.

https://www.youtube.com/watch?v=ytabout

Почти все новые кулеры, воздушные, жидкостные и водяные блоки, поставляются в комплекте с прокладкой, пеной, винтами, вентиляторами и набором инструкций. В зависимости от производителя и типа упаковки нижняя часть кулера процессора будет подготовлена двумя способами:

  1. Предварительно нанесена термопаста
  2. Небольшая самоклеящаяся пластиковая лента для защиты полировки во время транспортировки

Встречайте в нашем обзоре массивный воздушный кулер Wraith Ripper, производства Cooler Master, но продвигаемый AMD в качестве базового кулера для новых процессоров Threadripper 2. На все его основание густо нанесена термопаста. Когда я попытался сделать фотографии, я все попутал.

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Также в наш обзор включен жидкостный охладитель Enermax Liqtech TR4 с тюбиком термопасты. Нижняя часть блока, контактирующая с CPU, была покрыта защитной самоклеящейся пластиковой лентой.

Пример из Твиттера TechTeamGB

Итак, время исповеди. Наш обзорный комплект прилетел на день раньше меня. Действие происходило во время моего странствия с Великобритании в Сан-Франциско на Flash Memory Summit и Intel Datacenter Summit. В моих чемоданах я привез материнскую плату X399 (ASUS ROG Zenith), три чипа X399 (2990WX, 2950X, 1950X), материнскую плату X299 (ASRock X299 OC Formula), несколько чипов Skylake-X, источник питания Corsair AX860i, RX 460, мышь, клавиатуру, кабели – попросту компоненты, чтобы собрать две системы и использовать монитор в гостиничном номере для тестирования. После 11-часового прямого рейса, двух часов на паспортном контроле, и более часа в такси Uber до моего отеля, я собрал систему с 2990WX.

Я не снял пластик на охладителе Enermax. Я этого не заметил. Я даже нанес термопасту на процессор и ничего не заподозрил, даже когда затягивал винты.

Я настроил систему на максимально поддерживаемую частоту памяти, установил Windows, установил обновления системы безопасности, установил тесты и запустил систему на всю ночь, пока спал. Я даже не подозревал, что пластмасса осталась прикреплена. Утром тестовый набор уже закончил работу. Выполнив некоторые дополнительные тесты, такие как измерения латентности базовой частоты, я пошел заменить процессор на 2950X. Именно в это время я исполнил выразительный фейспалм.

Увидев термопасту, размазанную по процессору и пластику, я понял, что прийдется все запускать заново. Сняв пластик, вставил процессор, настроил систему, на этот раз с лучшим термическим профилем.

Цель любой системы состоит в том, чтобы поддерживать ее в нужном «температурном окне» для стабильной работы: большинство процессоров рассчитаны на правильную работу при температуре до 105 ° C, после чего они выключаются во избежание разрушительных термических повреждений. Когда процессор гоняет электроны по цепям и делает всякие нужные штуки, он потребляет энергию. Эта мощность теряется как тепло, рассеивается из чипа в двух основных направлениях: сокет и кулер.

У процессоров AMD Threadripper материал термического интерфейса между кремниевыми матрицами и теплоотводом — пайка из индия-олова. Прямая связь металл-металл нужна для прямого теплообмена. Современные процессоры Intel используют вместо этого слоя силиконовую термическую пасту, которая передает тепло хуже, но имеет одно важное преимущество — она ​способна прожить гораздо больше термических циклов.

По мере того, как металлы нагреваются, они расширяются: два металла, связанные вместе, с различными коэффициентами теплового расширения, проходя через множество циклов нагрева, будут трескаться и терять эффективность. Термическая паста устраняет эту проблему. Кроме того, термопаста дешевле. Так что выбор термического интерфейса — это компромисс между ценой, долговечностью и производительностью.

https://www.youtube.com/watch?v=ytdev

Над теплоотводом находится процессорный кулер, но между ними есть еще один термический интерфейс, его пользователь может выбирать. Самый дешевый вариант — обычная силиконовую термопаста по цене цент за галлон, однако энтузиасты производительности могут выбрать термопасту на основе серебра или другую смесь с хорошими термическими характеристиками.

Итак, что произойдет, если вы внезапно нанесете несколько микрон термически бесполезного пластика между теплоотводом и кулером процессора?

Прежде всего, теплообмен будет ужасен. Это означает, что тепловая энергия остается в пасте, заставляя процессор впитывать тепло, повышая температуру. Это, по сути, тот же случай, когда кулер перегружен большим процессором – поглощение тепла процессором становится настоящей проблемой. Это приводит к ускоренному повышению температуры, пока градиент температуры не сравняется с выходом тепловой энергии.

Что же видит пользователь в системе? Представьте, что ваш процессор работает на частоте 600 МГц при рендеринге, вместо хороших базовых 3125 МГц (см. предыдущую страницу). Базовые температуры выше, температура нагрузки выше, температура корпуса выше. Зато можно высушить влажную одежду, что бы тепло не пропадало. Небольшой перегрев не вредит процессору, но вот большое количество способно сделать его очень слабым.XFR2 от AMD

В конечном итоге такая проблема вредит AMD больше, чем вы могли представить. Способ, которым AMD реализует свои турборежимы в новых процессорах, больше не является справочной таблицей со списком «загруженные ядра -{amp}gt; турбочастота». Она зависит от мощности, тока и тепловых пределов данного чипа. Если найдется место для прироста — платформа AMD добавит частоту и напряжение. Такая тепловая подстройка выполняется тем, что AMD называет XFR2, или eXtended Frequency Range 2.

В AMD’s Tech Day для Threadripper 2 нам были представлены графики, показывающие влияние использования более мощных кулеров на производительность: примерно 10% улучшение результатов тестов при росте теплоотводящего потенциала. Используйте систему в помещении с низкой температурой окружающей среды, и AMD даст 16% прироста производительности по сравнению со стоковой системой.

Однако, обратное тоже верно. Имея кусок пластика там, где хороший теплообмен должен был поднять частоты и напряжение, мы получили значительное снижение производительности.

На всех многопоточных тестах, когда CPU сильно загружается, наблюдается значительное снижение производительности. Блендер показал 20% снижение пропускной способности, POV-Ray упал на 10%, для 3DPM потери составили 19%. Результаты PCMark снижены не так значительно, поскольку у него много однопоточных тестов, а в некоторых тестах мы увидели даже отклонение в другую сторону, например, в WinRAR, который зависит от DRAM.

Чему я научился?

Не будь дураком. Сборка испытательного стенда с новыми компонентами, будучи сильно уставшим, может привести к повторным испытаниям.

Заключения: не все ядра рождены равными

Проектирование процессора часто представляет собой процесс тонкой настройки. Чтобы получить производительность, архитектор должен сбалансировать вычисления с пропускной способностью, и всегда иметь достаточно данных «кормления зверя» — загрузки процессорных ядер. Если «зверь» остался без дела, он потребляет энергию, не делая никакой работы.

Иногда экзотические продукты выпадают из общего стека. Новое поколение процессоров AMD Ryzen Threadripper – это та самая экзотика. Казалось бы, выпущены прямые замены компонентов предыдущего поколения, подобные им, но с лучшей задержкой и большей частотой. Эти компоненты уже хорошо известны, и мы получаем ожидаемое повышение привычным путем. И в этот момент дополнительный кремний, включенный в 2990WX, без прямого доступа к памяти, бросает гаечный ключ в налаженный механизм.

2950X (слева) и 2990WX (справа)

Когда все ядра напрямую связаны с памятью, например, у 2950X, все ядра считаются равными, и распределение рабочей нагрузки является довольно простой задачей. С выходом новых процессоров мы получили ситуацию, показанную на рисунке справа. Теперь только некоторые ядра напрямую привязаны к памяти, а остальные — нет.

https://www.youtube.com/watch?v=ytpress

Чтобы в полной мере использовать возможности подобной архитектуры, рабочая нагрузка должна быть не требовательна к памяти. В таких задачах, как расчет движения частиц, трассировка лучей, рендеринг сцены и декомпрессия, полная загрузка всех 32-х ядер позволяет процессору быть звездой наших тестов и ставить новые рекорды.

В стиле двуликого Януса, при других рабочих нагрузках, которые исторически зависели от количества ядер, таких как физика, перекодирование и сжатие, двухмодульная структура приводит к значительной потере производительности. В итоге, здесь, по-видимому, нет средних результатов — либо рабочая нагрузка показывает отличные результаты на новом процессоре, либо оказывается в хвосте нашего высококачественного пакета тестирования.

Часть проблемы связана с распределением мощности этих очень больших процессорах. Как показано на стр. 4, чем больше chiplets, которые находятся в игре, или чем больше Mesh, тем больше энергии подается не на ядра, а внутренним сетям, таким как uncore или Infinity Fabric. Сравнивая один линк IF в 2950X с шестью в 2990WX, мы обнаружили, что IF теперь потребляет 60-73% от общей мощности чипа при небольших нагрузках, и 25-40% на высоких.

По сути, при полной нагрузке чип, подобный 2990WX, использует только 60% своего бюджета мощности для частоты процессора. В EPYC 7601 из-за дополнительных каналов памяти ядра потребляли всего 50% бюджета мощности под нагрузкой. Будьте уверены, что после того, как AMD и Intel закончат борьбу за количество ядер, следующей целью в их списке станет интерконнект.

Но побочный эффект от того, что чип не использует всю мощность для питания ядер, а также имеет бимодальную архитектуру, заключается в том, что некоторые рабочие нагрузки не будут масштабироваться, а в некоторых случаях наблюдается регресс.

Нет никаких сомнений в том, что, когда AMD Ryzen Threadripper 2990WX получит возможность поработать в полную, он сделает это с удовольствием. Мы смогли разогнать систему до 4 ГГц на всех ядрах, просто изменив настройки BIOS, хотя AMD также поддерживает Precision Boost Overdrive в Windows, чтобы выжать побольше из чипа.

Это тот момент, когда я наконец говорю, рекомендуем ли мы покупать новые продукты AMD. Возможность поставить в ваши слоты 2950X вместо 1950X, еще и по более низкой цене, кажется нам очень привлекательной. Однако 2950X уже является нишевым продуктом для высокой производительности — и 2990WX подхватывает эту эстафету и уносится вдаль, делая самый мощный процессор «нишей ниши».

Честно говоря, далеко не во всех случаях его производительность так велика, как можно было бы ожидать, и его применение имеет смысл для узкого набора рабочих нагрузок, где он оказывается несравненным. И хотя он превосходит почти все другие процессоры в нашем компиляционном тесте, есть один процессор, который побил его: 2950X.

Для большинства пользователей достаточно 2950X. Для немногих избранных 2990WX окажется лучшим процессором в мире.

Спасибо, что остаетесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас:Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

3 месяца бесплатно при оплате новых Dell R630 на срок от полугода — 2 х Intel Deca-Core Xeon E5-2630 v4 / 128GB DDR4 / 4х1TB HDD или 2х240GB SSD / 1Gbps 10 TB — от $99,33 месяц, только до конца августа, заказать можно тут.

Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Модельный ряд Ryzen Threadripper второго поколения

Начнём с главного: во втором поколении своей HEDT-платформы AMD решила разделить модельный ряд на две части. Если раньше Ryzen Threadripper позиционировались в качестве универсальных процессоров  высокой производительностидля энтузиастов, то теперь компания стала дробить целевую аудиторию на более узкие сообщества.

К первой группе потенциальных покупателей Ryzen Threadripper были отнесены те пользователи, которые просто хотят получить в своё распоряжение исключительную вычислительную мощность, и собираются использовать её для решения задач различного профиля. В качестве примера AMD, в частности, говорит о таких энтузиастах, которые в рабочее время имеют дело с обработкой или созданием цифрового контента, а досуг посвящают компьютерным играм.

Во вторую группу AMD выделила профессионалов, которым нужна максимальная вычислительная производительность любой ценой. В понимании компании это – 3D-дизайнеры, разработчики игр, видеомонтажёры, научные работники и тому подобные специалисты, имеющие дело с творческими задачами, порождающими высокие вычислительные нагрузки.

Для них теперь предлагаются специальные версии Ryzen Threadripper серии WX, получившие 24 и 32 вычислительных ядра. Но нужно иметь в виду, что это на самом деле – не привилегированное предложение. Такие процессоры, несмотря на внушительное количество ядер, не универсальны: в отличие от представителей серии X они хорошо справляются лишь с легко распараллеливаемыми вычислительными задачами и плохо подходят для неоднородных нагрузок.

https://www.youtube.com/watch?v=ytpolicyandsafety

Таким образом, модельный ряд Ryzen Threadripper увеличивается в два с лишним раза: к трём моделям первого поколения добавляется сразу четыре новых процессора.

  Ядра/ Потоки Базовая частота, ГГц Макс. частота, ГГц L3-кеш, Мбайт Поддержка памяти Линии PCIe TDP, Вт Цена
Threadripper 2990WX 32/64 3,0 4,2 64 4 х DDR4-2933 60 250 $1799
Threadripper 2970WX 24/48 3,0 4,2 64 4 х DDR4-2933 60 250 $1299
Threadripper 2950X 16/32 3,5 4,4 32 4 х DDR4-2933 60 180 $899
Threadripper 2920X 12/24 3,5 4,3 32 4 х DDR4-2933 60 180 $649
Threadripper 1950X 16/32 3,4 4,0 32 4 х DDR4-2667 60 180 $779
Threadripper 1920X 12/24 3,5 4,0 32 4 х DDR4-2667 60 180 $485
Threadripper 1900X 8/16 3,8 4,0 16 4 х DDR4-2667 60 180 $319

С учётом того, что у AMD теперь сосуществует два типа Ryzen Treadripper, флагмана среди процессоров второго поколения получилось тоже два.

Самым мощным процессором в семействе выступает 32-ядерный Threadripper 2990WX со стоимостью $1800, который, исходя из цены, противопоставляется интеловскому максимальному предложению для десктопов – 18-ядерному Core i9-7980XE. Характерно, что для маркировки этого процессора AMD использует суффикс WX, который давно прижился в сегменте профессиональной графики, где для рабочих станций предлагаются видеокарты Radeon Pro WX.

Умопомрачительное количество ядер в Threadripper 2990WX обеспечивается тем, что в отличие от предшественников и собратьев серии X этот процессор строится не на двух, а на четырёх 12-нм кристаллах Zen Zeppelin, и благодаря этому он стал ещё сильнее похож на серверные процессоры EPYC. Вместе с удвоившимся числом вычислительных ядер Threadripper 2990WX получил и увеличенный L3-кеш суммарным объёмом 64 Мбайт.

Но в остальном старший Threadripper сохраняет большинство характеристик в привычных рамках: он полностью совместим с экосистемой Socket TR4 и потому поддерживает четыре канала памяти и 60 линий PCI Express 3.0. Немного удивляет разве только расчётное тепловыделение, доведённое до 250 Вт. Оно обусловлено тем, что вместе с 32 ядрами Threadripper 2990WX предлагает и относительно высокие рабочие частоты, которые согласно спецификации лежат в диапазоне от 3,0 до 4,2 ГГц.

К тому же, делать горячие процессоры для AMD совсем не в новинку: вспомним хотя бы про FX-9590, тепловыделение которого старший Threadripper превзошёл всего на 30 Вт. Но, как уверяет AMD, с энергетическими аппетитами 32-ядрерного процессора никаких проблем быть не должно. Даже в TR4-материнские платы, выпущенные одновременно с первыми Threadripper, был заложен необходимый запас прочности.

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Второй флагман среди Ryzen Threadripper второго поколения – это 16-ядерный Threadripper 2950X – процессор, приходящий на смену Threadripper 1950X. В отличие от Threadripper 2990WX эта новинка продолжает использовать в своей основе два 12-нм кристаллах Zen Zeppelin, и поэтому она структурно близка к прошлогоднему Threadripper 1950Х.

Но хотя вычислительных ядер и L3-кеша в новинке ровно столько же, выглядит она заметно лучше за счёт поднявшихся рабочих частот, которые теперь лежат в диапазоне 3,5-4,4 ГГц против 3,4-4,0 в 16-ядерном процессоре прошлого поколения. Кроме того, не стоит забывать, что характерной особенностью процессоров с микроархитектурой Zen выступают технологии Precision Boost 2 (PB2) и Extended Frequency Range 2 (XFR2), способные подстраивать частоту под имеющуюся нагрузку куда агрессивнее, чем это происходило ранее.

В результате, преимущество в производительности может оказаться даже более явным, чем это кажется при взгляде на паспортные характеристики. Вместе с тем, никаких заметных изменений в тепловыделении Threadripper 2950X не произошло: характеристика TDP у нового 16-ядерника установлена в стандартную для платформы Socket TR4 величину 180 Вт.

Что же касается оснащённости Threadripper 2950X внешними интерфейсами, то в этом отношении 16-ядерник не отличается от 32-ядерного Threadripper 2990WX нет. Процессор предлагает те же четыре канала DDR4-2933 и 60 линий PCI Express 3.0. Но по сравнению с Threadripper 1950X появилась поддержка более скоростной памяти: раньше официально гарантировалась лишь совместимость с модулями DDR4-2666.

Несмотря на произошедшие перемены, процессоры Ryzen Threadripper второго поколения остаются совместимы с уже имеющейся платформой Socket TR4 без каких-либо ограничений. AMD специально подчёркивает, что все имеющиеся на рынке материнские платы, выпущенные для Threadripper 1920Х и 1950X совместимы с новыми CPU после обновления BIOS.

Иными словами, AMD придерживается выбранного курса на сохранение сквозной совместимости не только в массовой платформе Socket AM4, но и в системах класса HEDT. Но в отличие от массовых систем, где вместе с Ryzen двухтысячной серии появились улучшенные наборы системной логики, для процессоров Threadripper второго поколения продолжает предлагаться тот же чипсет X399, что и раньше.

Благодаря тому, что в Ryzen Threadripper поддерживается 60 линий PCI Express 3.0, большинство критически важных функций, как поддержка видеокарт и накопителей, реализуется без участия чипсета. Микросхема X399, фактически, отвечает лишь за интерфейсы SATA и USB, а также за реализацию второстепенных линков PCI Express 2.0. Поэтому в обновлении она и не нуждается.

Зато за счёт программного обновления и старые, и новые материнские платы на базе X399 получили поддержку технологии StoreMI, которая позволяет строить производительные комплексные дисковые подсистемы, объединяющие в одном томе механические и твердотельные жёсткие диски, а также расположенный в оперативной памяти кеш.

Оба новых флагманских HEDT-процессора, и Threadripper 2990WX, и Threadripper 2950X, поступят в продажу в самое ближайшее время: 32-ядерный чип можно купить, начиная с сегодняшнего дня, а старший 16-ядерник серии X второго поколения поступит в магазины 31 августа. Что же касается двух других процессоров с 24 и 12 ядрами, то они выйдут несколько позднее, ориентировочно в октябре.

Впрочем, по этому поводу вряд ли у кого-то возникнут особые переживания. Фактически, Threadripper 2970WX и Threadripper 2920X представляют собой удешевлённые аналоги старших моделей Threadripper 2990WX и Threadripper 2950X, но с отключённой парой вычислительных ядер в каждом входящем в состав процессоров кристалле Zeppelin.

Отдельно стоит подчеркнуть, что 8-ядерная модель среди Threadripper второго поколения не предусмотрена. И это закономерно: продажи Threadripper 1900X были невысоки, и модернизировать эту модель не было никакого смысла. В конце концов с ролью входного билета в платформу Socket TR4 вполне может справиться и недорогой процессор годичной давности.

Улучшения микроархитектуры

Как уже стало понятно к этому моменту, модельный ряд процессоров Threadripper второго поколения отличается двумя ключевыми признаками. Во-первых, в нём появились процессоры, которые собраны на основе четырёх, а не двух полупроводниковых кристаллов Zeppelin. И во-вторых, сами эти кристаллы получили более новый дизайн Zen , который обзавелся некоторыми усовершенствованиями.

Самое главное: Zen – это архитектура, получившаяся при переводе производства изначального дизайна Zen на более совершенный технологически процесс GlobalFoundries 12LP (Leading Performance) с 12-нм нормами. Однако в честь улучшения разрешения техпроцесса AMD не стала делать даже «оптический» редизайн своего кремния, поэтому и строение, и площадь, и компоновка полупроводникового кристалла осталось ровно теми же, что и были до того.

В конечном итоге это позволило в среднем на 200 МГц поднять рабочие частоты новых процессоров, снизив им напряжение питания на 80-120 мВ. И в сумме же вышло так, что с новыми Threadripper более высокая производительность стала доступна без какого-либо роста практического энергопотребления и тепловыделения.

Вторая часть усовершенствований Zen затрагивает задержки подсистемы кеш-памяти. Правда, в случае Threadripper они не так заметны, как были заметны в процессорах Ryzen второго поколения.

Дело в том, что ревизия кристаллов, которая применялась в HEDT-процессорах первого поколения уже содержала часть улучшений относительно первоначальной версии дизайна. Поэтому для Threadripper имеют место лишь достаточно скромное сокращение задержек:

  • латентность L3-кеша снизилась на 15 %;
  • латентность L2-кеша снизилась на 9 %;
  • латентность L1-кеша снизилась на 8 %;
  • латентность памяти снизилась на 2 %.

К этому стоит добавить появление в Threadripper второго поколения официальной поддержки DDR4-2933, что отражает произошедший качественный скачок в оптимизации библиотек AGESA. И теперь AMD гарантирует, что на частоте 2933 МГц заработает любая память, установленная в количестве одного модуля на канал.

Кроме того, не стоит забывать и о появлении в Zen технологий динамического изменения частоты PB2 и XFR2. Они в полной мере присутствуют и в Threadripper второго поколения, что позволяет им очень гибко подстраивать свою частоту в зависимости от нагрузки. При этом PB2 – это достаточно самобытная реализация турбо-режима, которая не предусматривает никаких чётких рамок по частоте процессора в зависимости от нагрузки, а рабочий режим подбирается интерактивно с шагом в 25 МГц, исходя из показаний внутриядерных датчиков токов и потребления.

XFR2 же добавляет в формулу моментальной частоты ещё и температуру, позволяя процессору автоматически разгоняться на дополнительные 10-15 %, если его тепловой режим не внушает никаких опасений. По этой причине производительность процессоров Threadripper, как и Ryzen второго поколения, приобрела заметную зависимость от качества системы охлаждения. И этот момент необходимо иметь в виду.

Ryzen Threadripper 2990WX в подробностях

Итак, Ryzen Threadripper 2990WX – это пусть и несколько своеобразный, но всё равно эпический процессор с 32 вычислительными ядрами и поддержкой SMT, дающей возможность одновременного исполнения 64 потоков. Как уже было сказано выше, этот процессор собран на основе четырёх кристаллов Zen Zeppelin, что означает, что в его конструкции принимает участие восемь модулей CCX, которые в общей сложности дают L3-кеш общим объёмом 64 Мбайт.

Но ничего подобного: инженеры AMD смогли выжать из Threadripper 2990WX очень достойные частотные характеристики. Новый 12-нм техпроцесс, который используется в производстве строительных блоков Threadripper второго поколения, а также строгий отбор наиболее удачных кремниевых заготовок из-за которого в них может попасть не более 5 процентов из сходящих с конвейера кристаллов, позволили определить номинальную частоту Threadripper 2990WX в 3,0 ГГц. Причём в большинстве случаев этот процессор будет работать гораздо быстрее: максимальная частота в турбо-режиме может доходить до 4,2 ГГц.

На следующем графике мы попытались отобразить, как выглядит реальная частота Threadripper 2990WX при нагрузке различной интенсивности. Выполняя тестирование производительности этого процессора в номинальном режиме в Cinebench R15 при задействовании различного числа вычислительных потоков, мы фиксировали выбранную процессором частоту. Её распределение в зависимости от загрузки процессора приобрело следующий вид.

Несмотря на то, что в качестве базового уровня для Threadripper 2990WX заявлена частота 3,0 ГГц, в реальности этот процессор почти всегда работает быстрее. И даже при рендеринге в Cinebench R15 на всех ядрах мы наблюдали частоту 3,2-3,3 ГГц, что как минимум на 10 % превосходит базовый уровень.

Threadripper 2990WX представляет собой NUMA-систему с четырьмя узлами, где каждый узел – это отдельный кристалл. При этом сами узлы различаются между собой: два – располагают двухканальными контроллерами памяти, а два – работают вообще без собственной памяти. В отличие от Threadripper прошлого поколения, совместную кооперативную работу двух контроллеров памяти в Threadripper 2990WX включить невозможно, и NUMA-архитектура для него – это навсегда.

https://www.youtube.com/watch?v=upload

Распределение ядер по узлам NUMA выглядит следующим образом.

К приведённой иллюстрации нужно добавить, что контроллеры памяти и PCI Express расположены в узлах с номерами 0 и 2, а узлы 1 и 3 – чисто вычислительные и внешних интерфейсов лишены. Именно поэтому ядра имеют не совсем естественную нумерацию: AMD присвоила первые 16 номеров тем ядрам, которые имеют возможность работать с памятью более быстро в надежде на то, что планировщик операционной системы первоначально будет размещать нагрузку именно на них, а ядра без прямого доступа к памяти пойдут в дело лишь во вторую очередь.

Впрочем, на практике это помогает далеко не всегда. В Windows 10 порой случается, что приложения «уезжают» на дальние ядра, работающие с памятью через дополнительные линки Infinity Fabric. Поэтому иногда бывает так, что приложение раз от раза работает с разной производительностью в зависимости от того, получилось у него разместиться на ядрах, расположенных в кристаллах с контроллером памяти, или не получилось.

Чтобы проиллюстрировать сказанное, достаточно посмотреть на то, как меняется скорость работы с памятью в зависимости от того, идут ли обращения к ней через контроллер памяти, находящийся в том же кристалле Zeppelin, или же через соседний. В следующих таблицах приведена практическая латентность и пропускная способность, развиваемая NUMA-узлами при работе с собственной памятью и памятью соседних NUMA-узлов (процессор работает на фиксированной частоте 3,8 ГГц, в подсистеме памяти используется DDR4-3200, измерения выполнены при помощи Intel Memory Latency Checker).

Результаты весьма показательны. Задержки при обращении ядер одного процессорного кристалла к «чужой» памяти, относящейся к контроллеру памяти другого кристалла, вырастают сразу на 75 процентов, а пропускная способность из-за ограниченности полосы пропускания коммутирующей кристаллы Zeppelin шины Infinity Fabric оказывается меньше почти вдвое. Иными словами, работа с данными, находящимися вне одного NUMA-узла, происходит в Threadripper 2990WX с достаточно низкой эффективностью.

Для полноты картины стоит взглянуть и на задержки, возникающие при пересылках данных между ядрами.

Естественно, низкие задержки на уровне 43-44 нс обеспечиваются лишь при тех пересылках данных, которые происходят между ядрами в рамках одного CCX-модуля. Если же отправитель и получатель находятся в разных CCX, но в одном кристалле, то латентность всё равно сразу же возрастает в три с половиной раза.

А если данные требуется передавать ещё дальше – в соседний кристалл, то латентность таких межъядерных обменов увеличивается до более чем 200 нс. Любопытно, что те вычислительные ядра, которые расположены в кристаллах без собственного контроллера памяти, порождают при пересылках данных дополнительные задержки, в результате чего, латентность межъядерных обменов может доходить до внушительной величины в 245 нс. Очевидно, шина Infinity Fabric загружена в них сильнее, чем в обычных кристаллах Zeppelin.

Ещё одна тонкость, связанная с эксплуатацией Threadripper 2990WX, касается впечатляющего тепловыделения этого процессора. В официальной спецификации говорится о тепловом пакете в 250 Вт, и это вызывает сразу два вопроса. Смогут ли потянуть 32-ядерник уже выпущенные TR4-материнские платы, изначально рассчитанные на 180-ваттные Threadripper первого поколения. И какой кулер потребуется для отвода такого количества тепловой энергии.

К счастью для потенциальных покупателей Threadripper 2990WX, никаких шокирующих ответов на эти вопросы AMD не даёт. Утверждается, что платы первого поколения с новым 32-ядерником вполне совместимы после обновления BIOS. И какие-то проблемы со схемами питания могут возникать разве только при разгоне.

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Впрочем, флагманские платформы вроде ASUS Zenith Extreme дадут возможность разогнать Threadripper 2990WX до максимума, несмотря на свой возраст. Единственное, что может потребоваться, это – дополнительное охлаждение схемы питания на материнской плате. Для тех же пользователей, которые всё же сомневаются в полной совместимости, производители подготовили несколько «усиленных» Socket TR4-материнок второго поколения. Например, MSI MEG X399 Creation, на базе которой мы проводили тесты для этого обзора.

Не требуются для Threadripper 2990WX и никакие особенные системы охлаждения. Те кулеры, которые подходили для Threadripper первого поколения, скорее всего, справятся и с 32-ядерным флагманом. Более того, сама AMD по-прежнему рекомендует использовать с новым старшим HEDT-процессором системы жидкостного охлаждения, сделанные Asetek, и даже комплектует 2990WX совместимым креплением для стандартного цилиндрического водоблока.

Впрочем, жидкостное охлаждение необходимостью не является, вполне можно обойтись даже воздушным кулером. Например, вместе с Threadripper второго поколения AMD в сотрудничестве с Cooler Master выпустила специальный кулер Wraith Ripper, представляющий собой двухсекционную башню с одним 120-мм вентилятором и шестью тепловыми трубками.

Но есть важный момент: этот кулер имеет большую подошву, которая покрывает крышку Threadripper полностью. И это, как показывает практика, заметно улучшает теплоотвод от процессора. В качестве примера мы сравнили максимальную температуру Threadripper 2990WX при прохождении нагрузочного тестирования в Prime95 при использовании нового Wraith Ripper, системы жидкостного охлаждения Corsair Hydro Series H115i с водоблоком стандартного размера и системы жидкостного охлаждения Enermax Liqtech 240 TR4 со специальным водоблоком для Threadripper, который полностью закрывает поверхность этого CPU.

AMD Ryzen Threadripper 2990WX
  Температура Tdie в Prime95 (макс.), °C Частота в Prime95 (мин.), МГц
Cooler Master Wraith Ripper 64,3 3025
Corsair Hydro Series H115i 63,8 3050
Enermax Liqtech 240 TR4 54,9 3100

Как следует из проведённого экспресс-тестирования, полное покрытие системой охлаждения всей поверхности теплорассеивающей крышки процессора – очень весомый фактор. Благодаря большой площади основания воздушный кулер получает возможность сравниться по эффективности даже с достаточно неплохой системой жидкостного охлаждения.

Иными словами, вывод очевиден: для систем с 250-ваттным Threadripper 2990WX лучше подбирать такой кулер, который имеет большую подошву, подогнанную по размеру для Socket TR4-процессора. Это важно ещё и потому, что от температуры процессора зависит работа технологии XFR2, и лучшее охлаждение даёт процессору возможность автоматически выходить на более высокие частоты и показывать лучшую производительность.

Ryzen Threadripper 2950X в подробностях

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Рассказ про 16-ядерный и 32-поточный Threadripper 2950X будет заметно короче. Этот процессор выступает простым инкрементным обновлением Threadripper 1950X годичной давности, а потому с точки зрения архитектуры ничего нового не приносит. Разница есть лишь в частотах, которые увеличились благодаря использованию 12-нм, а не 14-нм кремниевых кристаллов.

В реальном использовании частоты в зависимости от нагрузки распределяются примерно так, как показано на следующем графике, на котором задокументировано поведение Threadripper 2950X в номинальном режиме в Cinebench R15 при задействовании различного количества ядер.

Как и в случае Threadripper 2990WX, хорошо прослеживается работа технологии PB2, которая тонко подстраивает рабочую частоту под параметры нагрузки и текущего энергопотребления. Не стоит забывать и про XFR2 – технологию, дополнительно наращивающую частоту процессора в благоприятном температурном режиме.

Threadripper 2950X собран на основе двух, а не четырёх, как Threadripper 2990WX, полупроводниковых кристаллов Zen Zeppelin. Из-за этого у него не только вдвое меньше вычислительных ядер, но и вдвое меньше суммарный объём L3-кеша. Но большое преимущество заключается в том, что оба кристалла в нём равноценны, и благодаря этому никакой муторной и накладной для десктопного CPU реализации NUMA-архитектуры не требуется.

https://www.youtube.com/watch?v=ytcopyright

Threadripper 2950X использует более естественную модель памяти UMA, то есть вся установленная в системе память для всех ядер равнозначна. Физически это реализуется за счёт объединения двух имеющихся в кристаллах Zeppelin двухканальных контроллеров в один четырёхканальный и равномерного распределения по четырём каналам всех обращений к памяти.

В результате Threadripper 2950X может предложить более высокую пропускную способность при работе с памятью. Однако если сравнивать с обычными процессорами Ryzen, то работа с памятью у Threadripper 2950X происходит с более высокими задержками, связанными с постоянной необходимостью переадресации части запросов в контроллер памяти соседнего кристалла.

Помимо модели памяти UMA, который для Threadripper 2950X является основным, этот процессор можно переключить и в режим NUMA, что может быть интересно для каких-то чувствительных к латентности памяти малопоточных приложений, ярким примером которых выступают отдельные 3D-игры. Переключение осуществляется программно, при помощи утилиты AMD Ryzen Master, в которой предусмотрена специальная настройка.

В NUMA-режиме контроллеры памяти Threadripper 2950X разделяются, и каждый из кристаллов Zeppelin работает со своей собственной памятью независимо, обращаясь к соседнему контроллеру лишь по мере необходимости. Но, к сожалению, изменение модели работы с памятью происходит не «на лету». Для перехода от UMA к NUMA и обратно требуется перезагрузка, что делает пользование имеющимся в AMD Ryzen Master переключателем не слишком удобной .

Зато существование возможности переключения режимов позволяет нам наглядно показать разницу в пропускной способности и латентности памяти, возникающую при использовании Threadripper 2950X в конфигурации с NUMA- и UMA-памятью. Измерения сделаны при помощи утилиты Intel Memory Latency Checker, частота процессора – 3,8 ГГц, память работает в режиме DDR4-3200.

Результаты вполне логичны. В NUMA-режиме у Threadripper 2950X скорость работы с памятью в рамках одного узла (кристалла Zeppelin) похожа на ту скорость, которую обеспечивают обычные процессоры Ryzen. Однако если процессорному ядру требуется достучаться до памяти, подключенной к соседнему кристаллу, латентности возрастают на 75 процентов, а пропускная способность падает почти вдвое.

Чтобы не сталкиваться с подобным разбросом в скоростных параметрах, как раз и существует режим UMA. В нём пропускная способность памяти за счёт четырёхканальности заметно выше, чем у обычных Ryzen, но придётся смириться с высокими задержками, которые получаются даже выше, чем в самом худшем случае в NUMA-режиме.

Поскольку Threadripper 2950X – более простой по сравнению с Threadripper 2990WX процессор, его тепловыделение типично для платформы Socket TR4 — 180 Вт. Это значит, что в случае 16-ядерного CPU никаких проблем с платами и системами охлаждения быть не должно. Для этого процессора заведомо сгодится то же самое оснащение, которое предлагалось производителями для предыдущего поколения процессоров Threadripper.

Разгон

Маловероятно, что пользователи процессоров класса Threadripper, нацеленных на работу в рабочих станциях, будут часто прибегать к разгону. Однако мы всё же не стали обходить эту тему стороной, ведь оверклокинг позволяет не только увидеть скрытый частотный потенциал, но и проверить запас прочности платформы в целом, который в случае появления процессоров с TDP 250 Вт вызывает некоторые опасения.

Однако начать эксперименты мы все же решили не с тяжеловеса Threadripper 2990WX, а более скромного в плане потребления энергетических ресурсов Threadripper 2950X. Подобный процессор первого поколения, Threadripper 1950X, мы в своё время смогли разогнать до 3,9 ГГц. Но Threadripper 2950X должен быть более податлив, ведь он собран на основе 12-нм кристаллов, главным преимуществом которых называется как раз увеличенный частотный потенциал.

Кроме того, теперь в нашем распоряжении появилась новая система жидкостного охлаждения Enermax Liqtech 240 TR4, обладающая водоблоком, полностью покрывающим теплораспределительную крышку Threadripper. А это, как мы уже убедились, позволяет существенно поднять эффективность теплоотвода даже несмотря на сравнительно небольшой радиатор, который используется в этой системе охлаждения.

И в целом, Threadripper 2950X не разочаровал. Полная стабильность тестового процессора была получена на максимальной частоте 4,1 ГГц.

После установки напряжения питания 1,3 В процессор, работающий на частоте 4,1 ГГц, успешно проходил тестирование в Prime95, а максимальные температуры ядер при этом не выходили за пределы 78 градусов. Энергопотребление разогнанного процессора во время теста, согласно данным внутреннего мониторинга, составляло порядка 290 Вт.

Чего нельзя сказать о разгоне Threadripper 2990WX. Откровенно говоря, идея дополнительно увеличить частоту и напряжение процессору с расчётным тепловыделением 250 Вт без применения каких-либо продвинутых методов теплоотвода вызывает определённый скепсис. И как показала практика, совсем не зря. При оверклокерских экспериментах с Threadripper 2990WX возникает сразу две серьёзных проблемы.

https://www.youtube.com/watch?v=ytcreators

Во-первых, тепловыделение разогнанного процессора, построенного на четырёх кристаллах Zeppelin, лихо перешагивает через границу в 500 Вт, и отвести такое количество тепла на самом деле не так уж и просто даже с помощью системы жидкостного охлаждения. Во-вторых, в этом случае на конвертер питания на материнской плате ложится очень высокая нагрузка, в результате чего обеспечить его бесперебойную работу становится даже сложнее, чем совладать с тепловыделением процессора.

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Например, оверклокерские тесты Threadripper 2990WX мы проводили в системе на базе новой Socket TR4-материнской платы MSI MEG X399 Creation, в которой реализован мощный 19-фазный преобразователь напряжения (16 каналов на процессор и 3 – на SoC). Но даже организовав на тестовом стенде дополнительный обдув зоны VRM двумя 120-мм вентиляторами, мы всё равно столкнулись с перегревом преобразователя выше 110 градусов и срабатыванием его защиты.

Похоже, что граница в 500 Вт – это тот критический предел энергопотребления процессора, после прохождения которого нужно серьёзно задумываться в том числе и о модернизации охлаждения на плате. А без этого разгон Threadripper 2990WX ограничивается скорее возможностями платформы, чем собственным потенциалом.

В конечном итоге, чтобы избежать срабатывания защиты в схеме преобразования питания, нам пришлось ограничить повышение напряжения на процессоре величиной 1,29 В. И в этом случае максимальная частота, при которой оказалась возможна стабильная работа Threadripper 2990WX, составила 3,9 ГГц. Впрочем, в любом случае, работающий на такой частоте 32-ядерный процессор, это – настоящий монстр.

Никаких проблем с прохождением тестов стабильности в Prime95 работающим на 3,9 ГГц процессором Threadripper 2990WX не возникло. Максимальная температура процессора составила 84 градуса, его максимальное потребление – 458 Вт. Потребление тестовой системы целиком при нагрузочном тестировании не превышало 630 Вт.

Раз уж мы решили противопоставлять Threadripper 2920X типично десктопному процессору Core i9-9900K, тему разгона обходить стороной нельзя. Обычно процессоры класса Ryzen Threadripper не отличаются заметным нераскрытым частотным потенциалом. Например, 16-ядерный Threadripper 2950X в нашей лаборатории смог преодолеть лишь отметку 4,1 ГГц, но не более того. С Threadripper 2920X ситуация оказалось похожей, разве что 12-ядерный процессор всё же удалось разогнать немного получше – до 4,15 ГГц.

Обзор процессоров AMD Ryzen Threadripper 2990WX и 2950X: нужны ли в производительном десктопе 32 ядра, или посидим на 16

Такой разгон потребовал увеличения напряжения питания до 1,35 В и включения функции Load-Line Calibration. При тестировании стабильности с помощью Prime95 29.4 температура CPU не превышала 82 градусов, а максимальное энергопотребление CPU составляло 240 Вт. Однако никаких проблем с устойчивым функционированием компьютера не возникало, благо для отвода тепла мы пользовались системой жидкостного охлаждения Enermax Liqtech 240 TR4 со специальным водоблоком, который полностью закрывает поверхность Threadripper.

Затронув тему разгона, нельзя не упомянуть и ещё об одной возможности – функции Precision Boost Override, которая появилась во всех процессорах Ryzen второго поколения, включая и новые Threadripper. Она позволяет осуществлять интеллектуальный разгон процессора не до фиксированного значения частоты, а динамически: так, что частота автоматически подстраивается под текущую нагрузку в процессе работы.

Суть в том, что реализованный AMD турборежим, который управляется технологией Precision Boost 2, работает не по простой формуле, ставящей в соответствие частоту и число загруженных ядер, а опирается на совсем иные параметры. Рабочая частота определяется исходя из потребляемого тока и расчётного тепловыделения, что позволяет управлять производительностью гораздо более тонко.

Функция Precision Boost Override в свою очередь позволяет изменить заранее запрограммированные стандартные лимиты для электрических и тепловых характеристик CPU. Повысив их, пользователь может усилить агрессивность турборежима, разрешив процессору при подстройке собственной частоты брать более высокие рубежи как при слабой, так и при многопоточной нагрузке.

AMD говорит, что, при условии установки на процессор достаточно мощной системы охлаждения, производительность через Precision Boost Override можно поднять примерно на 13 процентов. Иными словами, такая технология разгона – это некий (и даже лучший) аналог интеловской функции Multi-Core Enhancements, которая, жертвуя экономичностью, тоже выводит процессор за рамки номинального режима.

Строго говоря, для настройки Precision Boost Override в BIOS материнской платы или в утилите Ryzen Master нужно изменить три параметра: PPT Limit – максимально допустимый уровень тепловыделения процессора (CPU Package); TDC Limit – максимальный ток, не приводящий к перегреву VRM платы; и EDC Limit – максимальный ток, не приводящий к электрической перегрузке VRM платы. Однако большинство производителей материнских плат предлагают простой способ модификации этих параметров в один клик.

Например, в BIOS используемой нами для тестов материнской платы MSI MEG X399 Creation опция Precision Boost Override позволяет поднять планку разрешённого энергопотребления процессора до 300, 400 или 500 Вт одним махом.

Для эксперимента мы выбрали максимальный вариант — 500 Вт, и это действительно увеличило рабочие частоты процессора на 200-300 МГц без какого-либо ущерба для стабильности системы. Изменение профиля частоты проиллюстрировано на следующем графике, где отображено поведение Threadripper 2920X при рендеринге в Blender с задействованием различного количества ядер.

Как видите, активация Precision Boost Override позволила перевести рабочие частоты тестового Threadripper 2920X в интервал 4,0-4,3 ГГц. Причём наиболее серьёзное увеличение частоты произошло в режимах с высокой нагрузкой на процессор, но и при малопоточной нагрузке процессор не утратил своей способности к авторазгону.

Поэтому Precision Boost Override действительно может оказаться лучшим вариантом, чем простой оверклокинг до фиксированных 4,15 ГГц. Тем более что в этом случае процессор не только получает более высокую частоту при малопоточной нагрузке, но и сохраняет возможность сбрасывать её вместе с напряжением в моменты простоя.

Кстати говоря, такой режим оказался и экономичнее в целом. Как следует из результатов измерений, энергопотребление процессора при тестировании в Blender выросло по сравнению с показателями в номинальном режиме не сильнее чем на 10-15 %.

https://www.youtube.com/watch?v=https:tv.youtube.com

Precision Boost Override не нарушает стабильность системы и работает таким образом, что температура процессора всё время остаётся в допустимых пределах. Стало быть, нет причин не воспользоваться этой возможностью, тем более в случае 12-ядерного Threadripper 2920X, который вряд ли сумеет как-то перегрузить систему питания на материнской плате.

Читать далее:  8 лучших жестких дисков для ноутбуков
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
ObzorTop